## 抄録

Consider the Cauchy problem for the incompressible Oldroyd-B model in R
^{3}
. For the case a = 0, global existence results for weak solutions were derived by Lions and Masmoudi (2000 Chin. Ann. Math. B 21 13146), allowing the initial data to be arbitrarily large, whereas it is not known whether this assertion is also true for a -= 0. In this article, time decay estimates for weak solutions subject to arbitrary large data are given for the case a = 0. Furthermore, timedecay estimates are also given for strong solutions for a = 0, however, for small initial data. The decay estimates obtained are of the form that the kth order derivatives in L
^{2}
decay as (1 + t)?34 ?k2 for k = 0, 1, 2 as t → ∞. Note that the coupling constant ω does not need to be small throughout this paper.

本文言語 | English |
---|---|

ページ（範囲） | 833-852 |

ページ数 | 20 |

ジャーナル | Nonlinearity |

巻 | 32 |

号 | 3 |

DOI | |

出版ステータス | Published - 2019 1月 29 |

外部発表 | はい |

## ASJC Scopus subject areas

- 統計物理学および非線形物理学
- 数理物理学
- 物理学および天文学（全般）
- 応用数学

## フィンガープリント

「Optimal decay rates for solutions to the incompressible Oldroyd-B model in R^{3}」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。