Optimal decay rates for solutions to the incompressible Oldroyd-B model in R 3

Matthias Georg Hieber, Huanyao Wen, Ruizhao Zi

研究成果: Article査読

13 被引用数 (Scopus)

抄録

Consider the Cauchy problem for the incompressible Oldroyd-B model in R 3 . For the case a = 0, global existence results for weak solutions were derived by Lions and Masmoudi (2000 Chin. Ann. Math. B 21 13146), allowing the initial data to be arbitrarily large, whereas it is not known whether this assertion is also true for a -= 0. In this article, time decay estimates for weak solutions subject to arbitrary large data are given for the case a = 0. Furthermore, timedecay estimates are also given for strong solutions for a = 0, however, for small initial data. The decay estimates obtained are of the form that the kth order derivatives in L 2 decay as (1 + t)?34 ?k2 for k = 0, 1, 2 as t → ∞. Note that the coupling constant ω does not need to be small throughout this paper.

本文言語English
ページ(範囲)833-852
ページ数20
ジャーナルNonlinearity
32
3
DOI
出版ステータスPublished - 2019 1月 29
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Optimal decay rates for solutions to the incompressible Oldroyd-B model in R 3」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル