Optimal development of doubly curved surfaces

Guoxin Yu, Nicholas M. Patrikalakis, Takashi Maekawa

研究成果: Article査読

55 被引用数 (Scopus)

抄録

This paper presents algorithms for optimal development (flattening) of a smooth continuous curved surface embedded in three-dimensional space into a planar shape. The development process is modeled by in-plane strain (stretching) from the curved surface to its planar development. The distribution of the appropriate minimum strain field is obtained by solving a constrained nonlinear programming problem. Based on the strain distribution and the coefficients of the first fundamental form of the curved surface, another unconstrained nonlinear programming problem is solved to obtain the optimal developed planar shape. The convergence and complexity properties of our algorithms are analyzed theoretically and numerically. Examples show the effectiveness of the algorithms.

本文言語English
ページ(範囲)545-577
ページ数33
ジャーナルComputer Aided Geometric Design
17
6
DOI
出版ステータスPublished - 2000 7月
外部発表はい

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 自動車工学
  • 航空宇宙工学
  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「Optimal development of doubly curved surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル