Optimal operating conditions and cost effectiveness of a single-stage ammonia/water absorption refrigerator based on exergy analysis

Keisuke Takeshita, Yoshiharu Amano

    研究成果: Paper査読

    抄録

    This study presents optimal design conditions by considering the cost effectiveness and operability of a single-stage ammonia/water absorption refrigerator (AAR) via exergy analysis. Chemical exergy change constitutes complexity with respect to exergy analysis of absorption systems. In the study, Gibbs free energy is considered in exergy analysis to precisely evaluate absorption and rectification processes including chemical exergy change. The theoretical maximum exergy efficiency of AAR and the influence of its design/operating conditions on exergy efficiency/destructions are investigated in an ideal condition. The analysis indicates the importance of the evaporator outlet liquid (bleed) ammonia mass fraction and desorber temperature. A condition of bleed mass fraction control is illustrated. The study also involves performing sensitivity analysis of design parameters (pinch temperatures) with respect to exergy efficiency and optimal desorber temperature. Finally, design conditions that maximize exergy efficiency per cost are derived relative to the sum of thermal conductance as a cost parameter. The study demonstrates the potential for downsizing of AAR without reducing exergy efficiency. The results indicate that approximately 39% total thermal conductance reduction, maintaining nominal efficiency, or 19% total thermal conductance reduction with an exergy efficiency increase of 16% are expected when compared to those in a commercial AAR.

    本文言語English
    出版ステータスPublished - 2017 1 1
    イベント30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017 - San Diego, United States
    継続期間: 2017 7 22017 7 6

    Other

    Other30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017
    国/地域United States
    CitySan Diego
    Period17/7/217/7/6

    ASJC Scopus subject areas

    • 環境科学(全般)
    • エネルギー(全般)
    • 工学(全般)

    フィンガープリント

    「Optimal operating conditions and cost effectiveness of a single-stage ammonia/water absorption refrigerator based on exergy analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル