Orbital stability and uniqueness of the ground state for the non-linear schrödinger equation in dimension one

Daniele Garrisi*, Vladimir Georgiev

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We prove that standing-waves which are solutions to the non-linear Schrödinger equation in dimension one, and whose profiles can be obtained as minima of the energy over the mass, are orbitally stable and non-degenerate, provided the non-linear term satisfies a Euler differential inequality. When the non-linear term is a combined pure power-type, then there is only one positive, symmetric minimum of prescribed mass.

本文言語English
ページ(範囲)4309-4328
ページ数20
ジャーナルDiscrete and Continuous Dynamical Systems- Series A
37
8
DOI
出版ステータスPublished - 2017 8

ASJC Scopus subject areas

  • 分析
  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Orbital stability and uniqueness of the ground state for the non-linear schrödinger equation in dimension one」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル