Ordered mesoporous silica derived from layered silicates

Tatsuo Kimura*, Kazuyuki Kuroda

*この研究の対応する著者

研究成果査読

63 被引用数 (Scopus)

抄録

Here, the development of ordered mesoporous silica prepared by the reaction of layered silicates with organoammonium surfactants is reviewed. The specific features of mesoporous silica are discussed with relation to the probable formation mechanisms. The recent understanding of the unusual structural changes from the 2D structure to periodic 3D mesostructures is presented. The formation of mesophase silicates from layered silicates with single silicate sheets depends on combined factors including the reactivity of layered silicates, the presence of layered intermediates, the variation of the silicate sheets, and the assemblies of surfactant molecules in the interlayer spaces. FSM-16-type (p6mm) mesoporous silica is formed via layered intermediates composed of fragmented silicate sheets and alkyltrimethylammonium (C nTMA) cations. KSW-2-type (c2mm) mesoporous silica can be prepared through the bending of the individual silicate sheets with intralayer and interlayer condensation. Although the structure of the silicate sheets changes during the reactions with C nTMA cations in a complex manner, the structural units caused by kanemite in the frameworks are retained. Recent development of the structural design in the silicate framework is very important for obtaining KSW-2-based mesoporous silica with molecularly ordered frameworks. The structural units originating from layered silicates are chemically designed and structurally stabilized by direct silylation of as-synthesized KSW-2. Some proposed applications using these mesoporous silica are also summarized with some remarks on the uniqueness of the use of layered silicates by comparison with MCM-type mesoporous silica.

本文言語English
ページ(範囲)511-527
ページ数17
ジャーナルAdvanced Functional Materials
19
4
DOI
出版ステータスPublished - 2009 2 24

ASJC Scopus subject areas

  • 化学 (全般)
  • 材料科学(全般)
  • 凝縮系物理学

フィンガープリント

「Ordered mesoporous silica derived from layered silicates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル