TY - JOUR
T1 - Orthogonalized infinite edge element methodconvergence improvement by orthogonalization of hilbert matrix in infinite edge element method
AU - Tamitani, S.
AU - Tsuzaki, K.
AU - Wakao, Shinji
AU - Tokumasu, T.
AU - Takahashi, Y.
AU - Kameari, A.
AU - Igarashi, H.
AU - Fujiwara, K.
AU - Ishihara, Y.
PY - 2012/2
Y1 - 2012/2
N2 - This paper proposes an orthogonalization of the Hilbert matrix in element matrices of the infinite edge elements. The validity of the infinite edge element is demonstrated in previous researches, but the Hilbert matrix results in extremely slow convergence in the ICCG method, especially when using higher order expansions. The proposed orthogonalization technique improves the convergence drastically and it makes the infinite elements practical in the electromagnetic FEM analysis of the open boundary problems in quasi-static magnetic fields.
AB - This paper proposes an orthogonalization of the Hilbert matrix in element matrices of the infinite edge elements. The validity of the infinite edge element is demonstrated in previous researches, but the Hilbert matrix results in extremely slow convergence in the ICCG method, especially when using higher order expansions. The proposed orthogonalization technique improves the convergence drastically and it makes the infinite elements practical in the electromagnetic FEM analysis of the open boundary problems in quasi-static magnetic fields.
KW - Improvement of the ICCG convergence
KW - infinite edge element
KW - open boundary
KW - orthogonalization of Hilbert matrix
UR - http://www.scopus.com/inward/record.url?scp=84856395165&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856395165&partnerID=8YFLogxK
U2 - 10.1109/TMAG.2011.2174342
DO - 10.1109/TMAG.2011.2174342
M3 - Article
AN - SCOPUS:84856395165
VL - 48
SP - 363
EP - 366
JO - IEEE Transactions on Magnetics
JF - IEEE Transactions on Magnetics
SN - 0018-9464
IS - 2
M1 - 6136760
ER -