TY - JOUR
T1 - Oscillatory flow and gas transport through a symmetrical bifurcation
AU - Fujioka, H.
AU - Oka, K.
AU - Tanishita, K.
PY - 2001
Y1 - 2001
N2 - Axial gas transport due to the interaction between radial mixing and radially nonuniform axial velocities is responsible for gas transport in thick airways during High-frequency oscillatory ventilation (HFO). Because the airways can be characterized by a bifurcating tube network, the secondary flow in the curved portion of a bifurcating tube contributes to cross-stream mixing. In this study the oscillatory flow and concentration fields through a single symmetrical airway bifurcating tube model were numerically analyzed by solving three-dimensional Navier-Stokes and mass concentration equations with the SIMPLER algorithm. The simulation conditions were for a Womersley number, α=9.1 and Reynolds numbers in the parent tube between 200 and 1000, corresponding to Dn2/α4 in the curved portion between 2 and 80, where Dn is Dean number. For comparison with the results from the bifurcating tube, we calculated the velocity and concentration fields for fully developed oscillatory flow through a curved tube with a curvature rate of 1/10, which is identical to the curved portion of the bifurcating tube. For Dn2/α4≤10 in the curved portion of the bifurcating tube, the flow divider and area changes dominate the axial gas transport, because the effective diffusivity is greater than in either a straight or curved tube, in spite of low secondary velocities. However, for Dn2/α4≥20, the gas transport characteristics in a bifurcation are similar to a curved tube because of the significant effect of secondary flow.
AB - Axial gas transport due to the interaction between radial mixing and radially nonuniform axial velocities is responsible for gas transport in thick airways during High-frequency oscillatory ventilation (HFO). Because the airways can be characterized by a bifurcating tube network, the secondary flow in the curved portion of a bifurcating tube contributes to cross-stream mixing. In this study the oscillatory flow and concentration fields through a single symmetrical airway bifurcating tube model were numerically analyzed by solving three-dimensional Navier-Stokes and mass concentration equations with the SIMPLER algorithm. The simulation conditions were for a Womersley number, α=9.1 and Reynolds numbers in the parent tube between 200 and 1000, corresponding to Dn2/α4 in the curved portion between 2 and 80, where Dn is Dean number. For comparison with the results from the bifurcating tube, we calculated the velocity and concentration fields for fully developed oscillatory flow through a curved tube with a curvature rate of 1/10, which is identical to the curved portion of the bifurcating tube. For Dn2/α4≤10 in the curved portion of the bifurcating tube, the flow divider and area changes dominate the axial gas transport, because the effective diffusivity is greater than in either a straight or curved tube, in spite of low secondary velocities. However, for Dn2/α4≥20, the gas transport characteristics in a bifurcation are similar to a curved tube because of the significant effect of secondary flow.
UR - http://www.scopus.com/inward/record.url?scp=0035034780&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035034780&partnerID=8YFLogxK
U2 - 10.1115/1.1352735
DO - 10.1115/1.1352735
M3 - Article
C2 - 11340875
AN - SCOPUS:0035034780
VL - 123
SP - 145
EP - 153
JO - Journal of Biomechanical Engineering
JF - Journal of Biomechanical Engineering
SN - 0148-0731
IS - 2
ER -