Oxygen adsorption on the LaB6(100), (110) and (111) surfaces

R. Nishitani*, C. Oshima, M. Aono, T. Tanaka, S. Kawai, H. Iwasaki, S. Nakamura


    研究成果: Article査読

    26 被引用数 (Scopus)


    Oxygen adsorption on the LaB6(100), (110) and (111) clean surfaces has been studied by means of UPS, XPS and LEED. The results on oxygen adsorption will be discussed on the basis of the structurs and the electronic states on the LaB6(100), (110) and (111) clean surfaces. The surface states on LaB6(110) disappear at the oxygen exposure of 0.4 L where a c(2 × 2) LEED pattern disappears and a (1 × 1) LEED pattern appears. The work function on LaB6(110) is increased to ∼3.8 eV by an oxygen exposure of ∼2 L. The surface states on LaB6(111) disappear at an oxygen exposure of ∼2 L where the work function has a maximum value of ∼4.4 eV. Oxygen is adsorbed on the surface boron atoms of LaB6(111) until an exposure of ∼2 L. Above this exposure, oxygen is adsorbed on another site to lower the work function from ∼4.4 to ∼3.8 eV until an oxygen exposure of ∼100L. The initial sticking coefficient on LaB6(110) has the highest value of ∼1 among the (100), (110) and (111) surfaces. The (100) surface is most stable to oxygen among these surfaces. It is suggested that the dangling bonds of boron atoms play an important role in oxygen adsorption on the LaB6 surfaces.

    ジャーナルSurface Science
    出版ステータスPublished - 1982 2月 2

    ASJC Scopus subject areas

    • 物理化学および理論化学
    • 凝縮系物理学
    • 表面および界面


    「Oxygen adsorption on the LaB6(100), (110) and (111) surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。