Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes

Tayfun E. Tezduyar, V. Kalro, W. Garrard

研究成果: Article

14 引用 (Scopus)

抄録

In this paper we describe parallel computational methods for 3D simulation of the dynamics and fluid dynamics of a parafoil with prescribed, time-dependent shape changes. The mathematical model is based on the time-dependent, 3D Navier-Stokes equations governing the incompressible flow around the parafoil and Newton's law of motion governing the dynamics of the parafoil, with the aerodynamic forces acting on the parafoil calculated from the flow field. The computational methods developed for these 3D simulations include a stabilized space-time finite element formulation to accommodate for the shape changes, special mesh generation and mesh moving strategies developed for this purpose, iterative solution techniques for the large, coupled nonlinear equation systems involved, and parallel implementation of all these methods on scalable computing systems such as the Thinking Machines CM-5. As an example, we report 3D simulation of a flare maneuver in which the parafoil velocity is reduced by pulling down the flaps. This simulation requires solution of over 3.6 million coupled, nonlinear equations at every time step of the simulation.

元の言語English
ページ(範囲)1349-1363
ページ数15
ジャーナルParallel Computing
23
発行部数9
出版物ステータスPublished - 1997 9
外部発表Yes

Fingerprint

Parallel Methods
Computational methods
Nonlinear equations
Computational Methods
Flaps
Mesh generation
Incompressible flow
Fluid dynamics
Navier Stokes equations
Flow fields
Aerodynamics
Simulation
Mathematical models
Newton's laws of motion
Nonlinear Equations
Space-time Finite Elements
Moving Mesh
Flare
Mesh Generation
Iterative Solution

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Software
  • Hardware and Architecture
  • Computer Networks and Communications
  • Computer Graphics and Computer-Aided Design
  • Artificial Intelligence

これを引用

Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes. / Tezduyar, Tayfun E.; Kalro, V.; Garrard, W.

:: Parallel Computing, 巻 23, 番号 9, 09.1997, p. 1349-1363.

研究成果: Article

@article{c78f3dc1759743a5aa5d489d25790e5d,
title = "Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes",
abstract = "In this paper we describe parallel computational methods for 3D simulation of the dynamics and fluid dynamics of a parafoil with prescribed, time-dependent shape changes. The mathematical model is based on the time-dependent, 3D Navier-Stokes equations governing the incompressible flow around the parafoil and Newton's law of motion governing the dynamics of the parafoil, with the aerodynamic forces acting on the parafoil calculated from the flow field. The computational methods developed for these 3D simulations include a stabilized space-time finite element formulation to accommodate for the shape changes, special mesh generation and mesh moving strategies developed for this purpose, iterative solution techniques for the large, coupled nonlinear equation systems involved, and parallel implementation of all these methods on scalable computing systems such as the Thinking Machines CM-5. As an example, we report 3D simulation of a flare maneuver in which the parafoil velocity is reduced by pulling down the flaps. This simulation requires solution of over 3.6 million coupled, nonlinear equations at every time step of the simulation.",
keywords = "3D simulation, Parafoil dynamics, Parallel finite elements, Space-time formulation",
author = "Tezduyar, {Tayfun E.} and V. Kalro and W. Garrard",
year = "1997",
month = "9",
language = "English",
volume = "23",
pages = "1349--1363",
journal = "Parallel Computing",
issn = "0167-8191",
publisher = "Elsevier",
number = "9",

}

TY - JOUR

T1 - Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes

AU - Tezduyar, Tayfun E.

AU - Kalro, V.

AU - Garrard, W.

PY - 1997/9

Y1 - 1997/9

N2 - In this paper we describe parallel computational methods for 3D simulation of the dynamics and fluid dynamics of a parafoil with prescribed, time-dependent shape changes. The mathematical model is based on the time-dependent, 3D Navier-Stokes equations governing the incompressible flow around the parafoil and Newton's law of motion governing the dynamics of the parafoil, with the aerodynamic forces acting on the parafoil calculated from the flow field. The computational methods developed for these 3D simulations include a stabilized space-time finite element formulation to accommodate for the shape changes, special mesh generation and mesh moving strategies developed for this purpose, iterative solution techniques for the large, coupled nonlinear equation systems involved, and parallel implementation of all these methods on scalable computing systems such as the Thinking Machines CM-5. As an example, we report 3D simulation of a flare maneuver in which the parafoil velocity is reduced by pulling down the flaps. This simulation requires solution of over 3.6 million coupled, nonlinear equations at every time step of the simulation.

AB - In this paper we describe parallel computational methods for 3D simulation of the dynamics and fluid dynamics of a parafoil with prescribed, time-dependent shape changes. The mathematical model is based on the time-dependent, 3D Navier-Stokes equations governing the incompressible flow around the parafoil and Newton's law of motion governing the dynamics of the parafoil, with the aerodynamic forces acting on the parafoil calculated from the flow field. The computational methods developed for these 3D simulations include a stabilized space-time finite element formulation to accommodate for the shape changes, special mesh generation and mesh moving strategies developed for this purpose, iterative solution techniques for the large, coupled nonlinear equation systems involved, and parallel implementation of all these methods on scalable computing systems such as the Thinking Machines CM-5. As an example, we report 3D simulation of a flare maneuver in which the parafoil velocity is reduced by pulling down the flaps. This simulation requires solution of over 3.6 million coupled, nonlinear equations at every time step of the simulation.

KW - 3D simulation

KW - Parafoil dynamics

KW - Parallel finite elements

KW - Space-time formulation

UR - http://www.scopus.com/inward/record.url?scp=0031222710&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031222710&partnerID=8YFLogxK

M3 - Article

VL - 23

SP - 1349

EP - 1363

JO - Parallel Computing

JF - Parallel Computing

SN - 0167-8191

IS - 9

ER -