Parallel version of the universal Vassiliev-Kontsevich invariant

Thang T.Q. Le*, Jun Murakami

*この研究の対応する著者

研究成果: Article査読

34 被引用数 (Scopus)

抄録

Let Ẑf be the universal Vassiliev-Kontsevich invariant for framed links in [13], which is a generalization of Kontsevich's invariant in [10, 1]. Let K be a framed knot and K(r) be its r-parallel. Then we show Ẑf(K(r)) = Δ(r)(Ẑf(K)), where Δ(r) is an operation of chord diagrams which replace the Wilson loop by r copies. We calculate the values of Ẑf of the Hopf links and the change of Ẑf under the Kirby moves. An explicit formula of an important normalization factor, which is the value of the trivial knot, in the universal enveloping algebra U(g) of any Lie algebra is given.

本文言語English
ページ(範囲)271-291
ページ数21
ジャーナルJournal of Pure and Applied Algebra
121
3
DOI
出版ステータスPublished - 1997 10月 10
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Parallel version of the universal Vassiliev-Kontsevich invariant」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル