Partial tensor decomposition for decoupling isogeometric Galerkin discretizations

Felix Scholz*, Angelos Mantzaflaris, Bert Jüttler

*この研究の対応する著者

研究成果: Article査読

16 被引用数 (Scopus)

抄録

System matrix assembly for isogeometric (i.e., spline-based) discretizations of partial differential equations is more challenging than for classical finite elements, due to the increased polynomial degrees and the larger (and hence more overlapping) supports of the basis functions. The global tensor-product structure of the discrete spaces employed in isogeometric analysis can be exploited to accelerate the computations, using sum factorization, precomputed look-up tables, and tensor decomposition. We generalize the third approach by considering partial tensor decompositions. We show that the resulting new method preserves the global discretization error and that its computational complexity compares favorably to the existing approaches. Moreover, the numerical realization simplifies considerably since it relies on standard techniques from numerical linear algebra.

本文言語English
ページ(範囲)485-506
ページ数22
ジャーナルComputer Methods in Applied Mechanics and Engineering
336
DOI
出版ステータスPublished - 2018 7月 1
外部発表はい

ASJC Scopus subject areas

  • 計算力学
  • 材料力学
  • 機械工学
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用

フィンガープリント

「Partial tensor decomposition for decoupling isogeometric Galerkin discretizations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル