Pedestrian detection using gradient local binary patterns

Ning Jiang*, Jiu Xu, Satoshi Goto


研究成果: Article査読

5 被引用数 (Scopus)


In recent years, local pattern based features have attracted increasing interest in object detection and recognition systems. Local Binary Pattern (LBP) feature is widely used in texture classification and face detection. But the original definition of LBP is not suitable for human detection. In this paper, we propose a novel feature named gradient local binary patterns (GLBP) for human detection. In this feature, original 256 local binary patterns are reduced to 56 patterns. These 56 patterns named uniform patterns are used for generating a 56-bin histogram. And gradient value of each pixel is set as the weight which is always same in LBP based features in histogram calculation to computing the values in 56 bins for histogram. Experiments are performed on INRIA dataset, which shows the proposal GLBP feature is discriminative than histogram of orientated gradient (HOG), Semantic Local Binary Patterns (S-LBP) and histogram of template (HOT). In our experiments, the window size is fixed. That means the performance can be improved by boosting methods. And the computation of GLBP feature is parallel, which make it easy for hardware acceleration. These factors make GLBP feature possible for real-time pedestrian detection.

ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
出版ステータスPublished - 2012 8月

ASJC Scopus subject areas

  • 電子工学および電気工学
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 応用数学
  • 信号処理


「Pedestrian detection using gradient local binary patterns」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。