Performance enhancement of semiconductor devices by control of discrete dopant distribution

M. Hori, T. Shinada, K. Taira, N. Shimamoto, T. Tanii, T. Endo, I. Ohdomari

研究成果: Article査読

14 被引用数 (Scopus)

抄録

As semiconductor devices are scaled down to the nanometre level, random dopant fluctuation in the conducting channel caused by the small number of dopant atoms will significantly affect device performance. We fabricated semiconductor devices with random discrete dopant distribution in the drain side and then evaluated how well we could control the drain current of the devices. The results showed that the drain current in devices with the dopant distribution in the drain side was several per cent higher than that in devices with the dopant distribution in the source side. We believe that this increase in current is caused by the suppression of injection velocity degradation in the source side. The capability to control the location of individual dopant atoms enhances drain current and, therefore, the performance of nanodevices. Accurately controlling both the amount and the positioning of dopant atoms is critical for the advancement of true nanoelectronics.

本文言語English
論文番号365205
ジャーナルNanotechnology
20
36
DOI
出版ステータスPublished - 2009 9 9

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

フィンガープリント 「Performance enhancement of semiconductor devices by control of discrete dopant distribution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル