TY - JOUR
T1 - Performance evaluation of newly developed SrI2(Eu) scintillator
AU - Takabe, M.
AU - Kishimoto, A.
AU - Kataoka, J.
AU - Sakuragi, S.
AU - Yamasaki, Y.
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/9/21
Y1 - 2016/9/21
N2 - The development of europium-doped strontium iodide (SrI2(Eu)) has attracted considerable attention, because of its excellent material properties as regards gamma-ray scintillator applications. These include its excellent energy resolution, high light output (>80,000ph/MeV), and high effective atomic number (Z=49). Here we report on the performance of ϕ 1 in×1 in SrI2(Eu) cylindrical crystals newly fabricated by Union Materials Inc. In this study, we measured the energy resolution and light output at 10 °C temperature intervals between −40 and 40 °C, using an optically coupled 2-in photomultiplier tube (PMT) (Super Bialkali, Hamamatsu). The SrI2(Eu) light output increased by 0.12%/°C as the temperature decreased. At −40 °C, we obtained the optimal energy resolution recording 2.91±0.02% full width at half maximum (FWHM) for 662 keV gamma rays measured with 137Cs. For comparison, we also measured the same crystal using both a large-area (19×19 mm2) avalanche photodiode detector (APD) and 8×8 multi-pixel photon counter (MPPC) arrays of 3×3 mm2 pixels. The energy resolutions of 2.94±0.02%, 3.14±0.06% and 3.99±0.01% were obtained using PMT, APD, and MPPC, respectively, as measured at −20 °C. We also measured the inherent background of SrI2(Eu) in a cave composed of Cu–Pb blocks with their thickness of 5–10 cm confirming that SrI2(Eu) has an extremely low inherent background radiation. In this study, we have shown that SrI2(Eu) is a promising scintillator that can be utilized for radiation measurements incorporating low-energy X-rays to high-energy gamma rays, and can thus be applied in various medical, industrial, and environmental treatment fields in the near future.
AB - The development of europium-doped strontium iodide (SrI2(Eu)) has attracted considerable attention, because of its excellent material properties as regards gamma-ray scintillator applications. These include its excellent energy resolution, high light output (>80,000ph/MeV), and high effective atomic number (Z=49). Here we report on the performance of ϕ 1 in×1 in SrI2(Eu) cylindrical crystals newly fabricated by Union Materials Inc. In this study, we measured the energy resolution and light output at 10 °C temperature intervals between −40 and 40 °C, using an optically coupled 2-in photomultiplier tube (PMT) (Super Bialkali, Hamamatsu). The SrI2(Eu) light output increased by 0.12%/°C as the temperature decreased. At −40 °C, we obtained the optimal energy resolution recording 2.91±0.02% full width at half maximum (FWHM) for 662 keV gamma rays measured with 137Cs. For comparison, we also measured the same crystal using both a large-area (19×19 mm2) avalanche photodiode detector (APD) and 8×8 multi-pixel photon counter (MPPC) arrays of 3×3 mm2 pixels. The energy resolutions of 2.94±0.02%, 3.14±0.06% and 3.99±0.01% were obtained using PMT, APD, and MPPC, respectively, as measured at −20 °C. We also measured the inherent background of SrI2(Eu) in a cave composed of Cu–Pb blocks with their thickness of 5–10 cm confirming that SrI2(Eu) has an extremely low inherent background radiation. In this study, we have shown that SrI2(Eu) is a promising scintillator that can be utilized for radiation measurements incorporating low-energy X-rays to high-energy gamma rays, and can thus be applied in various medical, industrial, and environmental treatment fields in the near future.
KW - Energy resolution
KW - Inherent background radiation
KW - Light output
KW - Radiation detector
KW - SrI(Eu) scintillator
KW - Temperature dependence
UR - http://www.scopus.com/inward/record.url?scp=84981762920&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84981762920&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2016.04.043
DO - 10.1016/j.nima.2016.04.043
M3 - Article
AN - SCOPUS:84981762920
VL - 831
SP - 260
EP - 264
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
SN - 0168-9002
ER -