Person retrieval on XML documents by coreference analysis utilizing structural features

Yumi Yonei*, Mizuho Iwaihara, Masatoshi Yoshikawa

*この研究の対応する著者

研究成果: Conference contribution

抄録

Keyword retrieval of the present day exploits frequencies and positions of search keywords in target documents. As for retrieval by two or more keywords, semantic relation between keywords is important. For retrieving information about a person, it is common to search by a pair of keywords consisting of person's name and his/her attribute of the interest. By using dependency analysis and coreference analysis, correct occurrences of pairs of person and his/her attributes can be retrieved. However, existing natural language analysis does not consider the factor that logical structures of the documents strongly influence probabilistic patterns of coreference. In this paper, we propose a new way of person retrieval by computing a maximum entropy model from linguistic features and structural features, where structural features are learned from probabilistic distribution of coreference over XML document structures. Our method can utilize strong correlation between XML document structures and coreference, thus having superior accuracy than existing methods.

本文言語English
ホスト出版物のタイトルDatabase and Expert Systems Applications - 19th International Conference, DEXA 2008, Proceedings
ページ552-565
ページ数14
DOI
出版ステータスPublished - 2008
外部発表はい
イベント19th International Conference on Database and Expert Systems Applications, DEXA 2008 - Turin, Italy
継続期間: 2008 9月 12008 9月 5

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
5181 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference19th International Conference on Database and Expert Systems Applications, DEXA 2008
国/地域Italy
CityTurin
Period08/9/108/9/5

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Person retrieval on XML documents by coreference analysis utilizing structural features」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル