Personalized Extractive Summarization with Discourse Structure Constraints Towards Efficient and Coherent Dialog-Based News Delivery

Hiroaki Takatsu*, Ryota Ando, Hiroshi Honda, Yoichi Matsuyama, Tetsunori Kobayashi

*この研究の対応する著者

研究成果: Conference contribution

抄録

In this paper, we propose a method to generate a personalized summary that may be of interest to each user based on the discourse structure of documents in order to deliver a certain amount of coherent and interesting information within a limited time, primarily via a spoken dialog form. We initially constructed a news article corpus with annotations of the discourse structure, users’ profiles, and interests in sentences and topics. The proposed summarization model solves an integer linear programming problem with the discourse structure of each document and the total utterance time as constraints and extracts sentences that maximize the sum of the estimated degree of user’s interest. The degree of interest in a sentence is estimated based on the user’s profile obtained from a questionnaire and the word embeddings of BERT. Experiments confirm that the personalized summaries generated by the proposed method transmit information more efficiently than generic summaries generated based solely on the importance of sentences.

本文言語English
ホスト出版物のタイトルConversational AI for Natural Human-Centric Interaction - 12th International Workshop on Spoken Dialogue System Technology, IWSDS 2021
編集者Svetlana Stoyanchev, Stefan Ultes, Haizhou Li
出版社Springer Science and Business Media Deutschland GmbH
ページ49-66
ページ数18
ISBN(印刷版)9789811955372
DOI
出版ステータスPublished - 2022
イベント12th International Workshop on Spoken Dialogue System Technology, IWSDS 2021 - Virtual, Online
継続期間: 2021 11月 152021 11月 17

出版物シリーズ

名前Lecture Notes in Electrical Engineering
943
ISSN(印刷版)1876-1100
ISSN(電子版)1876-1119

Conference

Conference12th International Workshop on Spoken Dialogue System Technology, IWSDS 2021
CityVirtual, Online
Period21/11/1521/11/17

ASJC Scopus subject areas

  • 産業および生産工学

フィンガープリント

「Personalized Extractive Summarization with Discourse Structure Constraints Towards Efficient and Coherent Dialog-Based News Delivery」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル