Phase diagram structure of topological Mott transition for zero-gap semiconductors beyond conventional Landau-Ginzburg-Wilson scenario

Moyuru Kurita, Youhei Yamaji, Masatoshi Imada

研究成果: Article査読

6 被引用数 (Scopus)

抄録

We show that a wide class of unconventional quantum criticality emerges when orbital currents cause quantum phase transitions from zero-gap semiconductors such as Dirac fermions to a topological insulator or a Chern insulator. Changes in Fermi-surface topology concomitant with [SU(2) or time-reversal] symmetry breakings generate quantum critical lines (QCLs) even beyond the quantum critical point. This QCL running at temperature T=0 separates two distinct topological phases. This is in contrast to the simple termination of the finite-temperature critical line at the quantum critical point without any extension of it at T=0. Topology change causes the unconventionality beyond the concept of simple spontaneous symmetry breaking assumed in the conventional Landau-Ginzburg-Wilson scenario. The unconventional universality implied by mean-field critical exponents β>1/2 and δ<3 is protected by the existence of the quantum critical line. It emerges for several specific lattice models including the honeycomb, kagome, diamond, and pyrochlore lattices. We also clarify phase diagrams of the topological phases in these lattices at finite temperatures.

本文言語English
論文番号115143
ジャーナルPhysical Review B - Condensed Matter and Materials Physics
88
11
DOI
出版ステータスPublished - 2013 9 27
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「Phase diagram structure of topological Mott transition for zero-gap semiconductors beyond conventional Landau-Ginzburg-Wilson scenario」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル