抄録
Rope turning tasks are useful to explore rhythmic physical human-robot interaction. However, in traditional studies, a robot was not able to turn a rope by itself, because simultaneous control of three factors, i. e., energy transmission, rotational axis and centrifugal force, is difficult when a robot rotates a flexible object such as a rope. In this paper, we propose a method to control these three factors simultaneously. We developed the method by adding a compensator to an attractor that attracts the end-effector of a robot to a uniform circular motion within a fixed radius. In a rope turning simulation, the end-effector of a robot and the center of mass of a simplified rope converged to uniform circular motions. In addition, we applied the proposed method to a rope turning task performed by a humanoid robot. The robot was able to turn a rope with one fixed end or in cooperation with a human.
本文言語 | English |
---|---|
ページ(範囲) | 491-506 |
ページ数 | 16 |
ジャーナル | Advanced Robotics |
巻 | 25 |
号 | 3 |
DOI | |
出版ステータス | Published - 2011 2月 1 |
ASJC Scopus subject areas
- ソフトウェア
- 制御およびシステム工学
- 人間とコンピュータの相互作用
- ハードウェアとアーキテクチャ
- コンピュータ サイエンスの応用