Plane curves in an immersed graph in R2

Marisa Sakamoto, Kouki Taniyama

研究成果: Article

3 引用 (Scopus)

抜粋

For any chord diagram on a circle there exists a complete graph on sufficiently many vertices such that any generic immersion of it to the plane contains a plane-closed curve whose chord diagram contains the given chord diagram as a sub-chord diagram. For any generic immersion of the complete graph on six vertices to the plane, the sum of averaged invariants of all Hamiltonian plane curves in it is congruent to one quarter modulo one-half.

元の言語English
記事番号1350003
ジャーナルJournal of Knot Theory and its Ramifications
22
発行部数2
DOI
出版物ステータスPublished - 2013 2 1

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント Plane curves in an immersed graph in R<sup>2</sup>' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用