Point-tangent/point-normal B-spline curve interpolation by geometric algorithms

Shu ichi Gofuku, Shigefumi Tamura, Takashi Maekawa*

*この研究の対応する著者

研究成果: Article査読

53 被引用数 (Scopus)

抄録

We introduce a novel method to interpolate a set of data points as well as unit tangent vectors or unit normal vectors at the data points by means of a B-spline curve interpolation technique using geometric algorithms. The advantages of our algorithm are that it has a compact representation, it does not require the magnitudes of the tangent vectors or normal vectors, and it has C2 continuity. We compare our method with the conventional curve interpolation methods, namely, the standard point interpolation method, the method introduced by Piegl and Tiller, which interpolates points as well as the first derivatives at every point, and the piecewise cubic Hermite interpolation method. Examples are provided to demonstrate the effectiveness of the proposed algorithms.

本文言語English
ページ(範囲)412-422
ページ数11
ジャーナルCAD Computer Aided Design
41
6
DOI
出版ステータスPublished - 2009 6月 1
外部発表はい

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 産業および生産工学

フィンガープリント

「Point-tangent/point-normal B-spline curve interpolation by geometric algorithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル