Polychoric correlations for ordered categories using the EM algorithm

Kempei Shiina, Takashi Ueda, Saori Kubo

    研究成果: Conference contribution

    1 引用 (Scopus)

    抜粋

    A new method for the estimation of polychoric correlations is proposed in this paper, which uses the Expectation-Maximization (EM) algorithm and the Conditional Covariance Formula. Simulation results show that this method attains the same level of accuracy as other methods, and is robust to deteriorated data quality.

    元の言語English
    ホスト出版物のタイトルQuantitative Psychology - The 82nd Annual Meeting of the Psychometric Society, Zurich, Switzerland, 2017
    出版者Springer New York LLC
    ページ247-259
    ページ数13
    233
    ISBN(印刷物)9783319772486
    DOI
    出版物ステータスPublished - 2018 1 1
    イベント82nd Annual meeting of the Psychometric Society, 2017 - Zurich, Switzerland
    継続期間: 2017 7 172017 7 21

    Other

    Other82nd Annual meeting of the Psychometric Society, 2017
    Switzerland
    Zurich
    期間17/7/1717/7/21

    ASJC Scopus subject areas

    • Mathematics(all)

    フィンガープリント Polychoric correlations for ordered categories using the EM algorithm' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Shiina, K., Ueda, T., & Kubo, S. (2018). Polychoric correlations for ordered categories using the EM algorithm. : Quantitative Psychology - The 82nd Annual Meeting of the Psychometric Society, Zurich, Switzerland, 2017 (巻 233, pp. 247-259). Springer New York LLC. https://doi.org/10.1007/978-3-319-77249-3_21