Population decoding based on an unfaithful model

S. Wu, H. Nakahara, N. Murata, S. Amari

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

We study a population decoding paradigm in which the maximum likelihood inference is based on an unfaithful decoding model (UMLI). This is usually the case for neural population decoding because the encoding process of the brain is not exactly known, or because a simplified decoding model is preferred for saving computational cost. We consider an unfaithful decoding model which neglects the pair-wise correlation between neuronal activities, and prove that UMLI is asymptotically efficient when the neuronal correlation is uniform or of limited-range. The performance of UMLI is compared with that of the maximum likelihood inference based on a faithful model and that of the center of mass decoding method. It turns out that UMLI has advantages of decreasing the computational complexity remarkablely and maintaining a high-level decoding accuracy at the same time. The effect of correlation on the decoding accuracy is also discussed.

本文言語English
ホスト出版物のタイトルAdvances in Neural Information Processing Systems 12 - Proceedings of the 1999 Conference, NIPS 1999
出版社Neural information processing systems foundation
ページ192-198
ページ数7
ISBN(印刷版)0262194503, 9780262194501
出版ステータスPublished - 2000
外部発表はい
イベント13th Annual Neural Information Processing Systems Conference, NIPS 1999 - Denver, CO, United States
継続期間: 1999 11月 291999 12月 4

出版物シリーズ

名前Advances in Neural Information Processing Systems
ISSN(印刷版)1049-5258

Conference

Conference13th Annual Neural Information Processing Systems Conference, NIPS 1999
国/地域United States
CityDenver, CO
Period99/11/2999/12/4

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 信号処理

フィンガープリント

「Population decoding based on an unfaithful model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル