Population monotonic allocation schemes for games with externalities

Takaaki Abe*

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

This paper provides conditions for a game with externalities to have a population monotonic allocation scheme (PMAS). We observe that the notion of convexity defined by Hafalir [Games Econ Behav 61:242–258, 2007] does not guarantee the existence of a PMAS in the presence of externalities. We introduce a new notion of convexity and show that while our convexity is not a stronger condition than Hafalir’s [Games Econ Behav 61:242–258, 2007] , it is a sufficient condition for a game to have a PMAS. Moreover, we show that the Aumann-Drèze value, which is defined for games with coalition structures, explicitly constructs a PMAS. In addition, we offer two necessary and sufficient conditions to guarantee a PMAS in the presence of externalities.

本文言語English
ページ(範囲)97-117
ページ数21
ジャーナルInternational Journal of Game Theory
49
1
DOI
出版ステータスPublished - 2020 3月 1

ASJC Scopus subject areas

  • 統計学および確率
  • 数学(その他)
  • 社会科学(その他)
  • 経済学、計量経済学
  • 統計学、確率および不確実性

フィンガープリント

「Population monotonic allocation schemes for games with externalities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル