Positive steady states for a prey–predator model with population flux by attractive transition

Kazuhiro Oeda*, Kousuke Kuto

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

This paper studies the stationary solutions of a prey–predator model with population flux by attractive transition. We first obtain a bifurcation branch (connected set) of positive solutions which connects two semitrivial solutions. Next we derive the asymptotic behavior of positive solutions as the coefficient α of the population flux tends to infinity. A main result implies that positive solutions can be classified into two types as α→∞. In one type of them, as α→∞, positive solutions of the prey–predator model approach positive solutions of a competition model with equal diffusion coefficients.

本文言語English
ページ(範囲)589-615
ページ数27
ジャーナルNonlinear Analysis: Real World Applications
44
DOI
出版ステータスPublished - 2018 12月
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 工学(全般)
  • 経済学、計量経済学および金融学(全般)
  • 計算数学
  • 応用数学

フィンガープリント

「Positive steady states for a prey–predator model with population flux by attractive transition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル