Power-law behavior in a cascade process with stopping events: A solvable model

Ken Yamamoto*, Yoshihiro Yamazaki

*この研究の対応する著者

研究成果: Article査読

9 被引用数 (Scopus)

抄録

The present paper proposes a stochastic model to be solved analytically, and a power-law-like distribution is derived. This model is formulated based on a cascade fracture with the additional effect that each fragment at each stage of a cascade ceases fracture with a certain probability. When the probability is constant, the exponent of the power-law cumulative distribution lies between -1 and 0, depending not only on the probability but the distribution of fracture points. Whereas, when the probability depends on the size of a fragment, the exponent is less than -1, irrespective of the distribution of fracture points. The applicability of our model is also discussed.

本文言語English
論文番号011145
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
85
1
DOI
出版ステータスPublished - 2012 1月 27

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Power-law behavior in a cascade process with stopping events: A solvable model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル