Process of transition to turbulence in an oscillatory turbulent pipe flow

A. Nakano*, K. Tanishita

*この研究の対応する著者

研究成果

1 被引用数 (Scopus)

抄録

Turbulence occurred in the major arteries can be important in the development of a variety of pathophysiological conditions including atherosclerosis, hemolysis, thrombosis, etc. We tried to characterize the effects of unsteadiness in the transition process in order to understand the nature of turbulence in the aorta. Experiments were conducted in a purely oscillatory pipe flow using hot wire anemometer and analyzed by means of statistical methods based on an ensemble averaging technique, also calculated the local phase power spectrum with moving window. The transition to turbulence occurred in the middle of the deceleration phase. The turbulent intensity began to rise and reached the maximum within the transition process. In the neighborhood of the wall the intensity after the transition increased to three times as large as that in central region. It is noted that the Kurtosis increased significantly before the transition process at the edge of stokes-layer. The integral scale also rises during the acceleration phase and shows a sudden decay after the transition. There appears to be a remarkable increase of integral scale at the middler region in the cross section. The large eddies generated in the outer region of stokes-layer causes the energy transport to small eddies during the transition process.

本文言語English
ホスト出版物のタイトルAmerican Society of Mechanical Engineers, Bioengineering Division (Publication) BED
Place of PublicationNew York, NY, United States
出版社Publ by ASME
ページ529-532
ページ数4
22
ISBN(印刷版)0791811166
出版ステータスPublished - 1992
外部発表はい
イベントWinter Annual Meeting of the American Society of Mechanical Engineers - Anaheim, CA, USA
継続期間: 1992 11 81992 11 13

Other

OtherWinter Annual Meeting of the American Society of Mechanical Engineers
CityAnaheim, CA, USA
Period92/11/892/11/13

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「Process of transition to turbulence in an oscillatory turbulent pipe flow」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル