Profiling participants in online-community based on influence diffusion model

Naohiro Matsumura*, Yukio Ohsawa, Mitsuru Ishizuka

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

Text-based communication in an online-community obscures the characteristics of the participants that aid social interaction. In this paper, we propose a new method for profiling participants in an online-community to help the participants gain a better grasp of their social milieu, i.e., who are the other participant, what are their characteristics, and what are their roles. The proposed algorithm is based on Influence Diffusion Model (IDM), a method for discovering influential comments, opinion leaders, and interesting terms from threaded online discussions. We applied the proposed algorithm to eight electronic message boards, and confirmed higher precision and coverage values than other traditional keyword-based profiling methods.

本文言語English
ページ(範囲)165-172
ページ数8
ジャーナルTransactions of the Japanese Society for Artificial Intelligence
18
4
DOI
出版ステータスPublished - 2003
外部発表はい

ASJC Scopus subject areas

  • 人工知能

フィンガープリント

「Profiling participants in online-community based on influence diffusion model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル