Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction

S. Anantharaj*, Subrata Kundu, Suguru Noda

*この研究の対応する著者

研究成果査読

132 被引用数 (Scopus)

抄録

Electrochemical water splitting powered by electrical energy derived from renewable sources is a green and faster way of producing bulk hydrogen with the highest purity. Unfortunately, the cost-inefficiency associated with energy loss (as overpotential) and costs of electrode materials have been forbidding this technology to surpass the currently dominant industrial process (steam reforming of hydrocarbons). With the recent evolution of transition metal chalcogenides, efficient commercial electrochemical water splitting is not too far. Transition metal chalcogenides are better in the hydrogen evolution reaction (HER) than pristine metals as they have negatively polarized chalcogenide anions with relatively lower free energy for proton adsorption. Moreover, chalcogenides are relatively easy to prepare and handle. Several metal chalcogenides have been reported with good HER activity among which Ni chalcogenides are reported to be exceptional ones. In recent years, growth of the nickel chalcogenide catalysed HER is massive. This review is devoted to bringing out a comprehensive understanding of what had happened in the recent past of this field with highlights on future prospects. In addition, we have also briefed the key physico-chemical properties of these materials and highlighted what one should anticipate while screening an electrocatalyst for electrochemical water splitting.

本文言語English
ページ(範囲)4174-4192
ページ数19
ジャーナルJournal of Materials Chemistry A
8
8
DOI
出版ステータスPublished - 2020 2月 28

ASJC Scopus subject areas

  • 化学 (全般)
  • 再生可能エネルギー、持続可能性、環境
  • 材料科学(全般)

フィンガープリント

「Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル