P3D6-TEJPA bundles and moduli spaces of their monodromy tuples

Martin Guest, Claus Hertling

    研究成果: Chapter

    抜粋

    We are concerned with P3D6 bundles which satisfy (6.6) and (6.7). They can be equipped with TEP structures, and the TEP structure is unique up to isomorphism. Therefore from now on we consider P3D6-TEP bundles. As explained in the previous chapter, they possess eight distinguished 4-tuples of bases e 0 ±, e ± (Theorem 6.3 (e)).

    元の言語English
    ホスト出版物のタイトルLecture Notes in Mathematics
    出版者Springer Verlag
    ページ59-70
    ページ数12
    2198
    DOI
    出版物ステータスPublished - 2017

    出版物シリーズ

    名前Lecture Notes in Mathematics
    2198
    ISSN(印刷物)0075-8434

    ASJC Scopus subject areas

    • Algebra and Number Theory

    フィンガープリント P<sub>3D6</sub>-TEJPA bundles and moduli spaces of their monodromy tuples' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Guest, M., & Hertling, C. (2017). P3D6-TEJPA bundles and moduli spaces of their monodromy tuples. : Lecture Notes in Mathematics (巻 2198, pp. 59-70). (Lecture Notes in Mathematics; 巻数 2198). Springer Verlag. https://doi.org/10.1007/978-3-319-66526-9_7