Q-curves of degree 5 and jacobian surfaces of GL2-type

Ki Ichiro Hashimoto*

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We construct a parametric family {E(±) (s, t, u)} of minimal Q-curves of degree 5 over the quadratic fields Q(√s2 + st - t2), and the family {C(s, t, u)} of genus two curves over Q covering E(+) (s, t, u) whose jacobians are abelian surfaces of GL2-type. We also discuss the modularity for them and the sign change between E(+) (s, t, u) and its twist E(-) (s. t, u), which correspond by modularity to cusp forms of trivial and non-trivial Neben type characters, respectively. We find in {C (s, t, u)} concrete equations of curves over Q whose jacobians are isogenous over cyclic quartic fields to Shimura's abelian surfaces A f attached to cusp forms of Neben type character of level N = 29, 229, 349, 461, and 509.

本文言語English
ページ(範囲)165-182
ページ数18
ジャーナルManuscripta Mathematica
98
2
DOI
出版ステータスPublished - 1999 2月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Q-curves of degree 5 and jacobian surfaces of GL2-type」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル