Quantification of the CO2 mineralization potential of ironmaking and steelmaking slags under direct gas-solid reactions in flue gas

Corey A. Myers*, Takao Nakagaki, Kosei Akutsu

*この研究の対応する著者

研究成果: Article査読

14 被引用数 (Scopus)

抄録

The potential for slag to reduce CO2 emissions in the iron and steelmaking industry through CO2 mineralization has long been recognized. Direct, gas-solid CO2 mineralization has major benefits of simplicity, cost, and CO2 accounting but has been historically plagued by ‘slow kinetics’. To determine the cause of the slow kinetics, 22 crystalline minerals and 13 amorphous compounds common to slag were synthesized and reacted with CO2 in an incubator held at 30 °C, a relative humidity of 90%, and a molar CO2 concentration of 5% and 20%. It was found that diffusivity through the product layer varies by ˜8 orders of magnitude between minerals, with several minerals displaying complete passivation after only a few nanometers of mineralization. Such unreactive materials can effectively occlude mineralization of more reactive minerals (‘mineral locking’). Quantitative theories were developed to determine the influence of mineral locking and diffusivity variability on the bulk CO2 mineralization rate. By reducing the size ratio of slag particle to the internal mineral grains the effects of mineral locking can be removed. Such alteration can be achieved by grinding or by generating larger mineral grains via a slow solidification of molten slag. As grinding is ultimately a necessary activity of direct, gas-solid CO2 mineralization, the mineral-specific grinding energy for 39 common slag compounds was calculated and used to determine the CO2 emissions associated with grinding. These data, along with a modification to the Shrinking Core Model, were used to determine the rate of CO2 mineralization and the net CO2 mineralization of blast furnace, basic oxygen furnace, and electric arc furnace slag. Results indicate that direct, gas-solid CO2 mineralization can be achieved in 1 h at very high net CO2 mineralization efficiencies, especially when renewable energy is the power source and when slag has been slowly solidified. Globally, this method could provide gigatonnes of CO2 emissions reduction by the end of the century.

本文言語English
ページ(範囲)100-111
ページ数12
ジャーナルInternational Journal of Greenhouse Gas Control
87
DOI
出版ステータスPublished - 2019 8

ASJC Scopus subject areas

  • 汚染
  • エネルギー(全般)
  • 産業および生産工学
  • 管理、モニタリング、政策と法律

フィンガープリント

「Quantification of the CO<sub>2</sub> mineralization potential of ironmaking and steelmaking slags under direct gas-solid reactions in flue gas」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル