Quasiconformal mapping class groups having common fixed points on the asymptotic Teichmüller spaces

Katsuhiko Matsuzaki*

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

For an analytically infinite Riemann surface R, we consider the action of the quasiconformal mapping class group MCG(R) on the Teichmüller space T(R), which preserves the fibers of the projection α: T(R) → AT(R) onto the asymptotic Teichmüller space AT(R). We prove that if MCG(R) has a common fixed point α(p) AT(R), then it acts discontinuously on the fiber T p over α(p), which is a separable subspace of T(R). In particular, this implies that MCG(R) is a countable group. This is a generalization of a fact that MCG(R) acts discontinuously on T o = T(R) for an analytically finite Riemann surface R.

本文言語English
ページ(範囲)1-28
ページ数28
ジャーナルJournal d'Analyse Mathematique
102
1
DOI
出版ステータスPublished - 2007 8月 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数学 (全般)

フィンガープリント

「Quasiconformal mapping class groups having common fixed points on the asymptotic Teichmüller spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル