Query snowball: A co-occurrence-based approach to multi-document summarization for question answering

Hajime Morita, Tetsuya Sakai, Manabu Okumura

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

We propose a new method for query-oriented extractive multi-document summarization. To enrich the information need representation of a given query, we build a co-occurrence graph to obtain words that augment the original query terms. We then formulate the summarization problem as a Maximum Coverage Problem with Knapsack Constraints based on word pairs rather than single words. Our experiments with the NTCIR ACLIA question answering test collections show that our method achieves a pyramid F3-score of up to 0.313, a 36% improvement over a baseline using Maximal Marginal Relevance.

本文言語English
ホスト出版物のタイトルACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics
ホスト出版物のサブタイトルHuman Language Technologies
ページ223-229
ページ数7
出版ステータスPublished - 2011 12 1
外部発表はい
イベント49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-HLT 2011 - Portland, OR, United States
継続期間: 2011 6 192011 6 24

出版物シリーズ

名前ACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
2

Conference

Conference49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-HLT 2011
CountryUnited States
CityPortland, OR
Period11/6/1911/6/24

ASJC Scopus subject areas

  • Language and Linguistics
  • Linguistics and Language

フィンガープリント 「Query snowball: A co-occurrence-based approach to multi-document summarization for question answering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル