R-HTDetector: Robust Hardware-Trojan Detection Based on Adversarial Training

Kento Hasegawa, Seira Hidano, Kohei Nozawa, Shinsaku Kiyomoto, Nozomu Togawa

研究成果査読

抄録

Hardware Trojans (HTs) have become a serious problem, and extermination of them is strongly required for enhancing the security and safety of integrated circuits. An effective solution is to identify HTs at the gate level via machine learning techniques. However, machine learning has specific vulnerabilities, such as adversarial examples. In reality, it has been reported that adversarial modified HTs greatly degrade the performance of a machine learning-based HT detection method. Therefore, we propose a robust HT detection method using adversarial training (R-HTDetector). We formally describe the robustness of R-HTDetector in modifying HTs. Our work gives the world-first adversarial training for HT detection with theoretical backgrounds. We show through experiments with Trust-HUB benchmarks that R-HTDetector overcomes adversarial examples while maintaining its original accuracy.

本文言語English
ページ(範囲)333-345
ページ数13
ジャーナルIEEE Transactions on Computers
72
2
DOI
出版ステータスPublished - 2023 2月 1

ASJC Scopus subject areas

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • ハードウェアとアーキテクチャ
  • 計算理論と計算数学

フィンガープリント

「R-HTDetector: Robust Hardware-Trojan Detection Based on Adversarial Training」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル