Radial basis function neural network based PID control for quad-rotor flying robot

Shoji Furukawa, Shunya Kondo, Atsuo Takanishi, Hun Ok Lim*

*この研究の対応する著者

    研究成果: Conference contribution

    7 被引用数 (Scopus)

    抄録

    It is difficult for flying robots with a conventional PID controller to fly stably with external disturbances such as wind. Thus, a flight control method that can change the control parameters of a conventional PID controller according to the external disturbances is described in this paper. The control parameters of the PID controller are automatically adjusted based on a radial basis function neural network (RBFNN). The experimental results show that the control method is capable of effectively dealing with external disturbances.

    本文言語English
    ホスト出版物のタイトルICCAS 2017 - 2017 17th International Conference on Control, Automation and Systems - Proceedings
    出版社IEEE Computer Society
    ページ580-584
    ページ数5
    2017-October
    ISBN(電子版)9788993215137
    DOI
    出版ステータスPublished - 2017 12月 13
    イベント17th International Conference on Control, Automation and Systems, ICCAS 2017 - Jeju, Korea, Republic of
    継続期間: 2017 10月 182017 10月 21

    Other

    Other17th International Conference on Control, Automation and Systems, ICCAS 2017
    国/地域Korea, Republic of
    CityJeju
    Period17/10/1817/10/21

    ASJC Scopus subject areas

    • 人工知能
    • コンピュータ サイエンスの応用
    • 制御およびシステム工学
    • 電子工学および電気工学

    フィンガープリント

    「Radial basis function neural network based PID control for quad-rotor flying robot」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル