Raman spectra of carriers in ionic-liquid-gated transistors fabricated with poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene)

Yukio Furukawa, Kotaro Akiyama, Ippei Enokida, Jun Yamamoto

    研究成果: Article

    5 引用 (Scopus)

    抜粋

    We observed the Raman spectra of carriers, positive polarons and bipolarons, generated in a poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) film by FeCl3 vapor doping. Electrical conductivity and Raman measurements indicate that the dominant carriers in the conducting state were bipolarons. We identified positive polarons and bipolarons generated in an ionic-liquid-gated transistor (ILGT) fabricated with PBTTT-C14 as an active semiconductor and an ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [BMIM][TFSI] as a gate dielectric using Raman spectroscopy. The relationship between the source-drain current (ID) at a constant source-drain voltage (VD) and the gate voltage (VG) was measured. ID increased above -VG = 1.1 V and showed a maximum at -VG = 2.0 V. Positive polarons were formed at the initial stage of electrochemical doping (-VG = 0.8 V). As ID increased, positive bipolarons were formed. Above VG = -2.0 V, bipolarons were dominant. The charge density (n), the doping level (x), and the mobility of the bipolarons were calculated from the electrochemical measurements. The highest mobility (μ) of bipolarons was 0.72 cm2 V-1 s-1 at x = 110 mol%/repeating unit (-VG = 2.0 V), whereas the highest μ of polarons was 4.6 × 10-4 cm2 V-1 s-1 at x = 10 mol%.

    元の言語English
    ページ(範囲)29-34
    ページ数6
    ジャーナルVibrational Spectroscopy
    85
    DOI
    出版物ステータスPublished - 2016 7 1

    ASJC Scopus subject areas

    • Spectroscopy

    フィンガープリント Raman spectra of carriers in ionic-liquid-gated transistors fabricated with poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene)' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用