Random conductance models with stable-like jumps: Heat kernel estimates and Harnack inequalities

Xin Chen, Takashi Kumagai, Jian Wang*

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We establish two-sided heat kernel estimates for random conductance models with non-uniformly elliptic (possibly degenerate) stable-like jumps on graphs. These are long range counterparts of the well known two-sided Gaussian heat kernel estimates by M.T. Barlow for nearest neighbor (short range) random walks on the supercritical percolation cluster. Unlike the cases of nearest neighbor conductance models, we cannot use parabolic Harnack inequalities since even elliptic Harnack inequalities do not hold in the present setting. As an application, we establish the local limit theorem for the models.

本文言語English
論文番号108656
ジャーナルJournal of Functional Analysis
279
7
DOI
出版ステータスPublished - 2020 10月 15
外部発表はい

ASJC Scopus subject areas

  • 分析

フィンガープリント

「Random conductance models with stable-like jumps: Heat kernel estimates and Harnack inequalities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル