TY - JOUR
T1 - Rate-limiting processes determining the switching time in a Ag2S atomic switch
AU - Nayak, Alpana
AU - Tamura, Takuro
AU - Tsuruoka, Tohru
AU - Terabe, Kazuya
AU - Hosaka, Sumio
AU - Hasegawa, Tsuyoshi
AU - Aono, Masakazu
PY - 2010/2/4
Y1 - 2010/2/4
N2 - The switching time of a Ag2S atomic switch, in which formation and annihilation of a Ag atomic bridge is controlled by a solid-electrochemical reaction in a nanogap between two electrodes, is investigated as a function of bias voltage and temperature. Increasing the bias voltage decreases the switching time exponentially, with a greater exponent for the lower range of bias than that for the higher range. Furthermore, the switching time shortens exponentially with raising temperature, following the Arrhenius relation with activation energy values of 0.58 and 1.32 eV for lower and higher bias ranges, respectively. These results indicate that there are two main processes which govern the rate of switching, first, the electrochemical reduction Ag ++e-→Ag and, second, the diffusion of Ag+ ions. This investigation advances the fundamental understanding of the switching mechanism of the atomic switch, which is essential for its successful device application.
AB - The switching time of a Ag2S atomic switch, in which formation and annihilation of a Ag atomic bridge is controlled by a solid-electrochemical reaction in a nanogap between two electrodes, is investigated as a function of bias voltage and temperature. Increasing the bias voltage decreases the switching time exponentially, with a greater exponent for the lower range of bias than that for the higher range. Furthermore, the switching time shortens exponentially with raising temperature, following the Arrhenius relation with activation energy values of 0.58 and 1.32 eV for lower and higher bias ranges, respectively. These results indicate that there are two main processes which govern the rate of switching, first, the electrochemical reduction Ag ++e-→Ag and, second, the diffusion of Ag+ ions. This investigation advances the fundamental understanding of the switching mechanism of the atomic switch, which is essential for its successful device application.
KW - Electron transport
KW - Hard matter
KW - Optical and electronic devices
UR - http://www.scopus.com/inward/record.url?scp=77749267616&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77749267616&partnerID=8YFLogxK
U2 - 10.1021/jz900375a
DO - 10.1021/jz900375a
M3 - Article
AN - SCOPUS:77749267616
VL - 1
SP - 604
EP - 608
JO - Journal of Physical Chemistry Letters
JF - Journal of Physical Chemistry Letters
SN - 1948-7185
IS - 3
ER -