Real-time estimation of human body postures using Kalman filter

Kazuhiko Takahashi, Tatsumi Sakaguchi, Jun Ohya

研究成果: Paper査読

10 被引用数 (Scopus)

抄録

This paper presents a hybrid estimation method of human body postures from CCD camera images. In the hybrid estimation method, the feature points of the human body (top of the head, tips of the hands, and feet, and elbow joints) are obtained from the results of heuristic contour analyses of human silhouettes or those of a time subtraction image depending on the reliability of the silhouette information. A dynamic compensation is then carried out by tracking all feature points using the AR model in order to obtain their optimal position and to overcome self-occlusion problems. The AR model's parameters are estimated through on-line processing by the Kalman filter. The proposed method is implemented on a personal computer and the process runs in real-time. Experimental results show high estimation accuracy and the feasibility of the proposed method.

本文言語English
ページ189-194
ページ数6
出版ステータスPublished - 1999 12 1
外部発表はい
イベント8th IEEE International Workshop on Robot and Human Communication RO-MAN '99 - Pisa, Italy
継続期間: 1999 9 271999 9 29

Conference

Conference8th IEEE International Workshop on Robot and Human Communication RO-MAN '99
CountryItaly
CityPisa
Period99/9/2799/9/29

ASJC Scopus subject areas

  • Hardware and Architecture
  • Software

フィンガープリント 「Real-time estimation of human body postures using Kalman filter」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル