抄録
Real-time traffic signal control is an integral part of an urban traffic control system. It can control traffic signals online according to variations of traffic flow. In this paper we propose a new method for a real-time traffic signal control system. The system uses a cellular automaton model and a Bayesian network model to predict probabilistic distributions of standing vehicles, and uses particle swarm optimization to calculate the optimal traffic signals. A simulation based on real traffic data was carried out to show the effectiveness of the proposed CAPSOBN real-time traffic signal control system using a micro traffic simulator.
本文言語 | English |
---|---|
ページ(範囲) | 1-13 |
ページ数 | 13 |
ジャーナル | Electronics and Communications in Japan |
巻 | 96 |
号 | 1 |
DOI | |
出版ステータス | Published - 2013 1月 1 |
ASJC Scopus subject areas
- 信号処理
- 物理学および天文学(全般)
- コンピュータ ネットワークおよび通信
- 電子工学および電気工学
- 応用数学