Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen carrier solution

Kenichi Nagase, Fukashi Kohori, Kiyotaka Sakai*, Hiroyuki Nishide

*この研究の対応する著者

研究成果: Article査読

11 被引用数 (Scopus)

抄録

Using the derived mass transfer correlations for hollow fibers, hollow fiber arrangements were optimized for an artificial gill that uses an oxygen carrier solution. FC-40, a perfluorocarbon (PFC), was used as the oxygen carrier solution. In the oxygen uptake module, a hollow fiber arrangement with parallel coiled hollow fibers is preferred. The optimum outside diameter of the hollow fibers and the transverse pitch between them are 300 and 500 μm, respectively. In the oxygen release module, a hollow fiber arrangement of straight parallel hollow fibers is preferred. The optimum outside diameter of the hollow fibers and transverse pitch between them are 300 and 500 μm, respectively. In the case of humans, the scaling up was estimated from the oxygen transfer rates using these optimum hollow fiber arrangements. The required total membrane surface area is 50.8 m2, the total delivered pumping energy is 124 W, and the oxygen partial pressure in inspiration is 17.8 kPa. Importantly, the total membrane surface area required was significantly reduced using the modules with an optimum hollow fiber arrangement in comparison with that using connected membrane oxygenators as a gas exchanger. The optimization of hollow fiber arrangements in an artificial gill significantly enhances oxygen transfer from water to air.

本文言語English
ページ(範囲)207-217
ページ数11
ジャーナルJournal of Membrane Science
254
1-2
DOI
出版ステータスPublished - 2005 6 1

ASJC Scopus subject areas

  • 生化学
  • 材料科学(全般)
  • 物理化学および理論化学
  • ろ過および分離

フィンガープリント

「Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen carrier solution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル