Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values

Koji Yokote, Takumi Kongo*, Yukihiko Funaki

*この研究の対応する著者

研究成果: Article査読

抄録

In cooperative game theory with transferable utilities (TU games), there are two well-established ways of redistributing Shapley value payoffs: using egalitarian Shapley values, and using consensus values. We present parallel characterizations of these classes of solutions. Together with the (weaker) axioms that characterize the original Shapley value, those that specify the redistribution methods characterize the two classes of values. For the class of egalitarian Shapley values, we focus on redistributions in one-person unanimity games from two perspectives: allowing the worth of coalitions to vary, while keeping the player set fixed; and allowing the player set to change, while keeping the worth of coalitions fixed. This class of values is characterized by efficiency, the balanced contributions property for equal contributors, weak covariance, a proportionately decreasing redistribution in one-person unanimity games, desirability, and null players in unanimity games. For the class of consensus values, we concentrate on redistributions in (n- 1) -person unanimity games from the same two perspectives. This class of values is characterized by efficiency, the balanced contributions property for equal contributors to social surplus, complement weak covariance, a proportionately decreasing redistribution in (n- 1) -person unanimity games, desirability, and null players in unanimity games.

本文言語English
ページ(範囲)81-98
ページ数18
ジャーナルTheory and Decision
91
1
DOI
出版ステータスPublished - 2021 7月

ASJC Scopus subject areas

  • 決定科学(全般)
  • 発達心理学および教育心理学
  • 人文科学(その他)
  • 応用心理学
  • 社会科学(全般)
  • 経済学、計量経済学および金融学(全般)
  • コンピュータ サイエンスの応用

フィンガープリント

「Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル