Regression analysis on high-dimensional, block diagonal structure data with focus on latent variables

Shinei Seki, Yasushi Nagata

研究成果: Conference contribution

抄録

This study aims to improve the prediction accuracy for high-dimensional, small-sample-size data in a regression analysis. When using such data, scholars suggest the use of the cluster representative lasso that combines a cluster analysis and lasso, particularly when the covariance matrix has a block diagonal structure. In this study, we propose a new technique, called the graphical principal component lasso with focus on the block diagonal structure of the covariance matrix and latent variables. From the simulation results, we conclude that the proposed method is superior to the adaptive lasso, cluster representative lasso and principal component regression in terms of prediction accuracy for high-dimensional, small-sample-size data.

本文言語English
ホスト出版物のタイトルMathematical Methods and Computational Techniques in Science and Engineering II
編集者Nikos Bardis
出版社American Institute of Physics Inc.
ISBN(電子版)9780735416987
DOI
出版ステータスPublished - 2018 7月 27
イベント2nd International Conference on Mathematical Methods and Computational Techniques in Science and Engineering - Cambridge, United Kingdom
継続期間: 2018 2月 162018 2月 18

出版物シリーズ

名前AIP Conference Proceedings
1982
ISSN(印刷版)0094-243X
ISSN(電子版)1551-7616

Other

Other2nd International Conference on Mathematical Methods and Computational Techniques in Science and Engineering
国/地域United Kingdom
CityCambridge
Period18/2/1618/2/18

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Regression analysis on high-dimensional, block diagonal structure data with focus on latent variables」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル