Regularity bounds for Koszul cycles

Aldo Conca, Satoshi Murai

研究成果: Article

2 引用 (Scopus)

抜粋

We study the Castelnuovo-Mumford regularity of the module of Koszul cycles Zt(I,M) of a homogeneous ideal I in a polynomial ring S with respect to a graded module M in the homological position t ∈ N. Under mild assumptions on the base field we prove that reg Zt(I,S) is a subadditive function of t when dim S/I = 0. For Borel-fixed ideals I, J we prove that reg Zt(I,S/J) ≤ t(1 + reg I) + regS/J, a result already announced by Bruns, Conca and Römer.

元の言語English
ページ(範囲)493-503
ページ数11
ジャーナルProceedings of the American Mathematical Society
143
発行部数2
DOI
出版物ステータスPublished - 2015 1 1
外部発表Yes

    フィンガープリント

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

これを引用