Relation classification for semantic structure annotation of text

Yulan Yan, Yutaka Matsuo, Mitsuru Ishizuka, Toshio Yokoi

研究成果: Conference contribution

3 引用 (Scopus)

抜粋

Confronting the challenges of annotating naturally occurring text into a semantically structured form to facilitate automatic information extraction, current Semantic Role Labeling (SRL) systems have been specifically examining a semantic predicate-argument structure. Based on the Concept Description Language for Natural Language (CDL.nl) which is intended to describe the concept structure of text using a set of pre-defined semantic relations, we develop a parser to add a new layer of semantic annotation of natural language sentences as an extension of SRL. With the assumption that all relation instances are detected, we present a relation classification approach facing the challenges of CDL.nl relation extraction. Preliminary evaluation on a manual dataset, using Support Vector Machine, shows that CDL.nl relations can be classified with good performance.

元の言語English
ホスト出版物のタイトルProceedings - 2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008
ページ377-380
ページ数4
DOI
出版物ステータスPublished - 2008
外部発表Yes
イベント2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008 - Sydney, NSW
継続期間: 2008 12 92008 12 12

Other

Other2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008
Sydney, NSW
期間08/12/908/12/12

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Electrical and Electronic Engineering

フィンガープリント Relation classification for semantic structure annotation of text' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Yan, Y., Matsuo, Y., Ishizuka, M., & Yokoi, T. (2008). Relation classification for semantic structure annotation of text. : Proceedings - 2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008 (pp. 377-380). [4740476] https://doi.org/10.1109/WIIAT.2008.128