Relations between symmetries and conservation laws for difference systems

Linyu Peng*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This paper presents a relation between divergence variational symmetries for difference variational problems on lattices and conservation laws for the associated Euler–Lagrange system provided by Noether's theorem. This inspires us to define conservation laws related to symmetries for arbitrary difference equations with or without Lagrangian formulations. These conservation laws are constrained by partial differential equations obtained from the symmetries generators. It is shown that the orders of these partial differential equations have been reduced relative to those used in a general approach. Illustrative examples are presented.

本文言語English
ページ(範囲)1609-1626
ページ数18
ジャーナルJournal of Difference Equations and Applications
20
12
DOI
出版ステータスPublished - 2014 12 2
外部発表はい

ASJC Scopus subject areas

  • 代数と数論
  • 応用数学
  • 分析

フィンガープリント

「Relations between symmetries and conservation laws for difference systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル