Relations expansion: Extracting relationship instances from the web

Haibo Li, Yutaka Matsuo, Mitsuru Ishizuka

研究成果: Conference contribution

抄録

In this paper, we propose a Relation Expansion framework, which uses a few seed sentences marked up with two entities to expand a set of sentences containing target relations. During the expansion process, label propagation algorithm is used to select the most confident entity pairs and context patterns. The label propagation algorithm is a graph based semi-supervised learning method which models the entire data set as a weighted graph and the label score is propagated on this graph. We test the proposed framework with four relationships, the results show that the label propagation is quite competitive comparing with existing methods.

本文言語English
ホスト出版物のタイトルProceedings - 2010 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2010
ページ184-187
ページ数4
1
DOI
出版ステータスPublished - 2010
外部発表はい
イベント2010 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2010 - Toronto, ON
継続期間: 2010 8 312010 9 3

Other

Other2010 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2010
CityToronto, ON
Period10/8/3110/9/3

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Software

フィンガープリント 「Relations expansion: Extracting relationship instances from the web」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル