Relationship between hirota's method and the inverse spectral method —the korteweg-de vries equation's case—

研究成果: Article査読

7 被引用数 (Scopus)

抄録

Recently, it is shown that for a number of soliton equations, their solutions expressing multiple solitons in a background of ripples, which may be called generalized soliton solutions, can be constructed using Hirota's bilinear forms of these soliton equations (S. OISHI: submitted to J. Phy. Soc. Jpn.). In this letter, taking the KdV equation as an example, relationship between Hirota's method and the inverse spectral method is clarified by showing that its generalized soliton solutions can be transformed into a form of Fredholm's determinants of the Gel'fand-Levitan-Marčenko integral equation.

本文言語English
ページ(範囲)1037-1038
ページ数2
ジャーナルjournal of the physical society of japan
47
3
DOI
出版ステータスPublished - 1979 1 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント 「Relationship between hirota's method and the inverse spectral method —the korteweg-de vries equation's case—」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル