Relaxation in an L-optimization problem

Hitoshi Ishii*, Paola Loreti

*この研究の対応する著者

    研究成果査読

    5 被引用数 (Scopus)

    抄録

    Let Ω be an open bounded subset of ℝn and f a continuous function on Ω̄ satisfying f(x) > 0 for all x ∈ Ω̄. We consider the maximization problem for the integral ∫Ω f(x)u(x) dx over all Lipschitz continuous functions u subject to the Dirichlet boundary condition u = 0 on ∂Ω and to the gradient constraint of the form H(Du(x)) ≤ 1, and prove that the supremum is 'achieved' by the viscosity solution of Ĥ(Du(x)) = 1 in Ω and u = 0 on ∂Ω, where Ĥ denotes the convex envelope of H. This result is applied to an asymptotic problem, as p → ∞, for quasi-minimizers of the integral ∫Ω [1/pH(Du(x))p - f(x)u(x)] dx. An asymptotic problem as k → ∞ for inf ∫Ω [k dist(Du(x), K) - f(x)u(x)] dx is also considered, where the infimum is taken all over u ∈ W0 1,1(Ω) and the set K is given by {ξ

    本文言語English
    ページ(範囲)599-615
    ページ数17
    ジャーナルRoyal Society of Edinburgh - Proceedings A
    133
    3
    出版ステータスPublished - 2003

    ASJC Scopus subject areas

    • 数学 (全般)

    フィンガープリント

    「Relaxation in an L<sup>∞</sup>-optimization problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル