Remarks on a limiting case of hardy type inequalities

Megumi Sano, Takuya Sobukawa

研究成果: Article査読

抄録

The classical Hardy inequality holds in Sobolev spaces W01, p when 1 ≤ p < N . In the limiting case where p = N , it is known that by introducing a logarithmic weight function in the Hardy potential, some inequality which is called the critical Hardy inequality holds in W01,N . In this note, in order to give an explanation of the appearance of the logarithmic function in the potential, we derive the logarithmic function from the classical Hardy inequality with best constant via some limiting procedure as p ↗ N . We show that our limiting procedure is also available for the classical Rellich inequality in second order Sobolev spaces W02, p with p ∈ (1, N2 ) and the Poincaré inequality.

本文言語English
ページ(範囲)1425-1440
ページ数16
ジャーナルMathematical Inequalities and Applications
23
4
DOI
出版ステータスPublished - 2020

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Remarks on a limiting case of hardy type inequalities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル